
 1 1

Agile IT – Project
Management

DI Philipp Rosenberger
philipp.rosenberger@fh-campuswien.ac.at

Page 2

Content of todays lecture

• Agile Mindset

• SCRUM

• Hybrid/ Collaborative Model

• The agile Project Manager

• KANBAN in IT projects

Page 3

Introduction

Page 4

IT Project Management Mindset

Brainstorming:

When is a project a project?

>

>

What defines a project as IT project?

>

>

Definition of a project? (according PMI)

A project is temporary in that it has a defined beginning and end in time,
and therefore defined scope and resources.

And a project is unique in that it is not a routine operation, but a specific
set of operations designed to accomplish a singular goal. So a project team
often includes people who don’t usually work together – sometimes from
different organizations and across multiple geographies.

Page 5

IT Project Management Mindset

Brainstorming:

What defines an excellent project manager?

>…

>…

What’s the difference between an excellent project manager and an
excellent IT project manager? What are additional skills of IT project
managers?

>…

>…

Page 6

The agile mindset

Page 7

Empirical and the unknown

Empirical projects:

Definition “empirical”:

1)

a. Relying on or derived from observation or experiment: empirical results that
supported the hypothesis.

b. Verifiable or provable by means of observation or experiment: empirical laws.

2. Guided by practical experience and not theory, especially in medicine.

em·pir′i·cal·ly adv.

Means: We need to gain the information along the way!

When to use?

we use AGILE methodologies if the cost of what we don’t know is higher, then the cost
of experimenting until we know.

Page 8

Planning versus experimenting

Comparing planning to experimenting (agile). Experimenting does not mean just try
and error. Its empirical processes to discover what we need to know to make good
decisions.

Do Plan based project have a discovery process?

Yes. When we discover that our plans were wrong? Possibilities:

-) Ignore: Because it makes our plan look bad

-) Change: sometimes the plan is too rigid and it makes to much trouble to change.

-) Sometimes we plan for failure: So we plan problems and uncertainties and hope that
we plan enough. So there is risk. So we push all these uncertainties all upfront and
take risk. But what about all the information developing throughout the way? Why don’t
we accommodate that? So better then planning every catastrophic situation upfront,
why don’t we allow decisions to be made later and use the latest up to date information
for these decisions?

17.11.2017

Page 9

Structure of Discovery

So to do this learning and discovery we need structure. Why do we need structure?

Because we are part of a collaboration. Part of a team. And we need alignment with
other members. It’s the shared language we use.

So if everyone makes experiments and hope to learn for his own, that’s chaos. Agile
needs processes.

4 pillars of structure:

•Vision of Outcomes (what is the software going to do?)

•Method of enactment (when do we work, how do we work,…)

•Alignment and collaboration (Agile: it’s the people who have the good ideas. The
process needs to support the discovery.)

•Measure of value. (Clear understanding of measuring what you are creating)

17.11.2017

Page 10

Why all this effort to find new methods?

Where are we today?

Standish Group (http://www.standishgroup.com) (für 2015):

Reasons why projects fail:

Unclear and anconnected requirements and high complexity!

http://www.infoq.com/articles/standish-chaos-2015

Page 11

Why all this effort to find new methods?

Page 12

IT Project Management
according SCRUM

Page 13

Why SCRUM?

Page 14

SCRUM Guidelines

Transparency

Significant aspects of the process must be visible to those
responsible for the outcome. Transparency requires those aspects
be defined by a common standard so observers share a common
understanding of what is being seen.

For example:

• A common language referring to the process must be shared by
all participants; and,

• Those performing the work and those accepting the work product
must share a common definition of “Done”.

Page 15

SCRUM Guidelines

Inspection

Scrum users must frequently inspect Scrum artifacts and progress
toward a Sprint Goal to detect undesirable variances. Their
inspection should not be so frequent that inspection gets in the way
of the work. Inspections are most beneficial when diligently
performed by skilled inspectors at the point of work.

Page 16

SCRUM Guidelines

Adaptation

If an inspector determines that one or more aspects of a process
deviate outside acceptable limits, and that the resulting product will
be unacceptable, the process or the material being processed must
be adjusted. An adjustment must be made as soon as possible to
minimize further deviation.

Page 17

Definition of SCRUM

Accord. Michael James Scrum Reference Card

Page 18

Overview „Scrum – Sprints“

Page 19

Scrum Roles

Page 20

Scrum Roles

Page 21

Scrum Roles

Page 22

Scrum Meetings

 Sprint

>The heart of Scrum is a Sprint, a time-
box of one month or less during which a
“Done”, useable, and potentially releasable
product Increment is created.

>Sprints best have consistent durations
throughout a development effort. A new
Sprint starts immediately after the
conclusion of the previous Sprint.

>During the Sprint:

» No changes are made that would
endanger the Sprint Goal;

» Quality goals do not decrease; and,

» Scope may be clarified and re-
negotiated between the Product Owner
and Development Team as more is
learned.

Page 23

Scrum Meetings

 Sprint Cancelling

A Sprint can be cancelled before the Sprint time-box is
over. Only the Product Owner has the authority to cancel
the Sprint, although he or she may do so under influence
from the stakeholders, the Development Team, or the
Scrum Master.

A Sprint would be cancelled if the Sprint Goal becomes
obsolete or if it no longer makes sense given the
circumstances.

When a Sprint is cancelled, any completed and “Done”
Product Backlog items are reviewed. If part of the work
is potentially releasable, the Product Owner typically
accepts it. All incomplete Product Backlog Items are re-
estimated and put back on the Product Backlog. The
work done on them depreciates quickly and must be
frequently re-estimated.

Sprint cancellations consume resources, since everyone
has to regroup in another Sprint Planning to start
another Sprint. Sprint cancellations are often traumatic
to the Scrum Team, and are very uncommon.

Page 24

Sprint Planning meeting

Definition of: What can be delivered in the Increment resulting
from the upcoming Sprint?

>Development Team works to forecast the functionality that will be
developed during the Sprint. The Product Owner discusses the objective
that the Sprint should achieve and the Product Backlog items that, if
completed in the Sprint, would achieve the Sprint Goal. The entire
Scrum Team collaborates on understanding the work of the Sprint.

>Input to this meeting is the Product Backlog, the latest product
Increment, projected capacity of the Development Team during the
Sprint, and past performance of the Development Team. The number of
items selected from the Product Backlog for the Sprint is solely up to
the Development Team. Only the Development Team can assess what it
can accomplish over the upcoming Sprint.

Page 25

Sprint Planning meeting

Definition of: Who will do the chosen work?

>The Development Team self-organizes to undertake the work in the
Sprint Backlog, both during Sprint Planning and as needed throughout
the Sprint.

>The Development Team may also invite other people to attend in order
to provide technical or domain advice.

>At the start of each sprint

>Duration of 1day for a 30 days sprint

>Participants: Development Team, Product Owner and Scrum Master

Page 26

Sprint review meeting

> Should feature a live demonstration, not a report.

> After the demonstration, the Product Owner reviews the
commitments made at the Sprint Planning Meeting and declares
which items he now considers done. (For example, a software item
that is merely “code complete” is considered not done, because
untested software isn’t shippable).

> Incomplete items are returned to the Product Backlog and ranked
according to the Product Owner’s revised priorities as candidates for
future Sprints. The Scrum Master helps the Product Owner and
stakeholders convert their feedback to new Product Backlog Items
for prioritization by the Product Owner.

> The Sprint Review Meeting is the appropriate meeting for external
stakeholders (even end users) to attend. It is the opportunity to
inspect and adapt the product as it emerges, and iteratively refine
everyone’s understanding of the requirements.

Page 27

Daily Scrum Meeting

> Participants: Development Team, Scrum Master, interested
participants to listen.

> Questions:
» What did we achieve yesterday?

» What are going to do today?

» What's keeping me from good performance and reaching my goals?

» What do I need to be able to work without being disturbed?

> The team may find it useful to maintain a current Sprint Task List, a
Sprint Burndown Chart, a KANBAN chart and a difficulties list.

Page 28

Sprint retrospective meeting

> Each Sprint ends with a retrospective. At this meeting, the team
reflects on its own process. They inspect their behavior and take
action to adapt it for future Sprints. Dedicated Scrum Masters will
find alternatives to the stale, fearful meetings everyone has come to
expect. An in-depth retrospective requires an environment of
psychological safety not found in most organizations. Without safety,
the retrospective discussion will either avoid the uncomfortable
issues or deteriorate into blaming and hostility.

Page 29

Backlog refinement meeting

In the Backlog Refinement
Meeting, the team estimates
the amount of effort they
would expend to complete
items in the Product Backlog
and provides other technical
information to help the
Product Owner prioritize
them. Large vague items are
split and clarified,
considering both business
and technical concerns.
Sometimes a subset of the
team, in conjunction with the
Product Owner and other
stakeholders, will compose
and split Product Backlog
Items before involving the
entire team in estimation.

Page 30

Sprint Burndown Chart

> Indicates total remaining team task hours within one Sprint Re-
estimated daily, thus may go up before going down

> Intended to facilitate team self-organizationten

> The ScrumMaster should discontinue use of this chart if it becomes
an impediment to team self-organization.

Page 31

Hybrid/collaborative model
Quellle: http://www.softwaretestinghelp.com/agile-waterfall-hybrid-model/

Page 32

Hybrid/collaborative model
Quellle: http://www.softwaretestinghelp.com/agile-waterfall-hybrid-model/

Page 33 17.11.2017

Example: Being an agile project manager as link
between Scrum and classical project environment
(Source: Projektmagazin 23/2014 – Claus Kolb)

Page 34 17.11.2017

Introduction

Question for discussion:

Which rolls would you like to take over after SCRUM development has been
introduced? In SCRUM, no PM is needed, but suggests that the PM changes
to Scrum Master or Product Owner.

That’s the ideal SCRUM world. But what can the reality in companies look
like?

Challenge:

> SCRUM approach is not introduced in the whole company but only in the
development department.

> Project stakeholder are also “non SCRUM” departments

Possible solution:

> Acting as AGILE PROJECT MANAGER

Page 35 17.11.2017

Definition

Classic project managing:

> Sequential approach (Concept, Realization, Test, Rollout)

> Additional Tasks
» Development of concept documentation

» Management reporting

» Budget overview

» Expectations of specific industry know how and development know how

Project Owner

Requirements
Engineer

Technical
Expert

Developer
Project

Manager

Page 36 17.11.2017

Definition

“Agile” Project Manager:

An agile project manager, leads a project, in which a part of the
team is using an agile approach. In this part of the project, most of
the over all project effort is located.

According SCRUM a PM is not needed anymore. In reality, a lot of
needed task are still there to be handled by a project manager.

Page 37 17.11.2017

Project example: Enhancement of an online
transaction platform

Project goals:

> Additional function of the technical platform (70% of the effort)

» Development according SCRUM

» In stable teams – Responsible for different functionalities

> Adaptation of processes and systems other departments (not working
with SCRUM)

» Establishment of a new data warehouse for new clients

» Enhancement of call center processes and infrastructure

Page 38 17.11.2017

Project example: Enhancement of an online
transaction platform

Typical project organization:

“Agile island”

Classical project approach

Page 39 17.11.2017

Possible role of a classical PM in SCRUM

Requirements Engineer/ Business Analyst = Product Owner

> Focus on content expertise

> Documentation of requirements in epics and user stories

> Maintenance and prioritization of back log

Result:

By having a dedicated product owner, the PM does not need to get into
content expertise. He is needed for moderation in technical and subject
specific discussion.

Page 40 17.11.2017

Possible role of a classical PM in SCRUM

“Technical expert”

Classical approach: Technical know how at software products, programming
and infrastructure to be able to define work packages, assign tasks and
define dependencies and priorities.

In “agile teams”

Not necessary anymore: developers are responsible for architecture
prioritization and implementation.

Work package definition is done by product owner from functionality point of
view and done by developers themselves from technical point of view.
Involvement of PM in this process is counter-productive.

Page 41 17.11.2017

Possible role of a classical PM in SCRUM

“Software Developer”

In SCRUM software is only produced by development team.

“Project Lead” – Who is assigning tasks between SCRUM Master,
Product Owner, Teams and agile PM?

> Initialization

> Method/approach and organization

> Planning

> Coordination agile und “classic islands”

> Controlling

> Change Mgmt.

> Communication/Reporting

> Project Marketing

> Risk Management

> Leadership / Motivation

> Close Out and Review

Page 44 17.11.2017

Cost and effort estimation

> Outside development– T-Shirt Size
» XS <= 5PT

» S <= 10PT

» M <= 25PT

» L <= 50PT

» XL <= 100PT

» XXL > 100PT

> Estimation based on epics and UserStories. Based on velocity of
teams product owner calculate story points into person days.

> Planning Poker in Sprint Planning

> Minimal Viable Product definition

> Needed for feasibility analysis and basis for decision making and
for prioritization in portfolio management.

Page 45 17.11.2017

Example sprint-planning

Page 46 17.11.2017

Example sprint-planning

Agile PM defines project milestones based
on sprint and release planning, which are
important for communication and
coordination with clients, other
departments, management and all other
project stakeholder. Also which are critical
for non agile departments.

Page 47 17.11.2017

Planning

> Outside the agile islands, where the PO does the sprint and release
planning, the project runs like a classical project. The work packages are
defined by the PM.

Page 48 17.11.2017

Planning – Best Practices

> Adoption of work package timelines to rhythm of sprints and releases (2-
3 weeks

> Copying of sprint and release plan into the project plan and assigning
dependencies with classical work packages.

> Detailed coordination within a sprint is task of SCRUM team members.
PM acts as coordinator and moderator

> Working with fixed SCRUM team members and if possible constant
capacity.

> PM asks department heads for capacity at non SCRUM departments
according sprint needs.

Page 49 17.11.2017

Coordination of agile and non-agile departments

> Sub projects managed by sub project PMs

> Coordination between agile PM and department heads about needed
capacity.

> Progress controlling in work packages by agile PM

> Identification and tracking of dependencies between agile and non agile
departments.

Page 50 17.11.2017

Project Controlling - Costs

In SCRUM scope of services is not fixed. Time and budget is.

The cost per story point develop based on velocity and cost of personal in
the development team.

Product Owner has the responsibility of assigning the budget smart to user
stories.

In case of budget issues and still open and needed story points the agile PM
manages a change request.

Page 51 17.11.2017

Project Controlling – Performance and Quality

> Classical project parts– Project manager

> Agile islands – Development team with Product Owner in Sprint Review
Meetings.

Best Practice:

> Sprint Review at morning time. Little issues can be solved before the
sprint and the whole US does not needed to be taken to the next sprint.

> When there are bigger issues, the solving of those can be done until the
next milestone. A fixed capacity for bug fixing makes sense.

Page 52 17.11.2017

Project Controlling - Time

> Covered by roles:

» PM = project phases and milestones

» Product Owner = Sprint and Release planning

» SCRUM Master and Dev = Keep sprints in time.

Page 53 17.11.2017

Change management

In agile part of the project:

No classical change requests. Because changes are integral part of the agile
process. Product Owner needs to keep the big picture and overview.

If the PO realizes problems, he can request a change request from the agile
PM. Done by a steering committee.

In our example there is a „Change Advisory Board“ to consult the agile PM
technically and functionally and show consequences of changes.

Members: Development, PO and PM

Page 54 17.11.2017

Communication and reporting

> SCRUM Master  Progress of SCRUM teams

> Agile PM  Puts together sprint reporting, release planning and status of

non agile project parts for management overview.

Project marketing

Product Owner keeps product vision. Agile PM is responsible for project and
project marketing.

Risk management

Agile Project manager keeps big picture and is responsible for risk

Page 55 17.11.2017

Leadership

Assigning work packages:

Not needed in SCRUM . Developers take their own user stories from the
back log. Requirements only result from the sprint planning and release
planning.

In classical part, the PM assigns work packages. Or if there is a weak matrix
organisation, the department head of classical departments

Conflict- and Motivation management

In agile part only by the SCRUM Master

In classical part by the agile PM . Also improving the project approach itself.

Page 56 17.11.2017

Project close out and review

In agile part done by sprint retrospectives. Organised and moderated by
SCRUM Master.

In classical part by agile PM.

Recommended a project-wide retrospective meeting every 3 sprints
organised by agile PM. (agile and non agile participants)

Page 57 17.11.2017

Other best practice for agile methods

Combination between agile method and the KANBAN production
structure (KANBAN 1947 – Toyota Motor Corporation)

Page 58 17.11.2017

What is KANBAN?
Source: http://kanbanblog.com/explained/

>Kanban is a new technique for managing a software development process in a highly
efficient way. Kanban underpins Toyota's "just-in-time" (JIT) production system.
Although producing software is a creative activity and therefore different to mass-
producing cars, the underlying mechanism for managing the production line can still be
applied.

>A software development process can be thought of as a pipeline with feature requests
entering one end and improved software emerging from the other end.

>Inside the pipeline, there will be some kind of process which could range from an
informal ad hoc process to a highly formal phased process. In this article, we'll assume
a simple phased process of: (1) analyse the requirements, (2) develop the code, and
(3) test it works.

http://kanbanblog.com/explained/

Page 59 17.11.2017

What is KANBAN?
Source: http://kanbanblog.com/explained/

Whats the problem about pipes? And things rushing through?

Bottlenecks…

A bottleneck in a pipeline restricts flow. The throughput of the
pipeline as a whole is limited to the throughput of the bottleneck.

http://kanbanblog.com/explained/

Page 60 17.11.2017

What is KANBAN?
Source: http://kanbanblog.com/explained/

Inevitably, quality suffers. To keep up, the testers start to cut
corners. The resulting bugs released into production cause
problems for the users and waste future pipeline capacity.

http://kanbanblog.com/explained/

Page 61 17.11.2017

Kanban reveals bottlenecks
Source: http://kanbanblog.com/explained/

The board below shows a situation where the developers and analysts are being
prevented from taking on any more work until the testers free up a slot and pull in the
next work item. At this point the developers and analysts should be looking at ways
they can help relieve the burden on the testers.

http://kanbanblog.com/explained/

Page 62 17.11.2017

Kanban Production system principles
Source: http://leankit.com/kanban/what-is-kanban/

1. Visualize Work

By creating a visual model of your work and workflow, you can observe the flow of
work moving through your Kanban system. Making the work visible—along with
blockers, bottlenecks and queues—instantly leads to increased communication and
collaboration.

2. Limit Work in Process

By limiting how much unfinished work is in process, you can reduce the time it takes an
item to travel through the Kanban system.

3. Focus on Flow

By using work-in-process (WIP) limits and developing team-driven policies, you can
optimize your Kanban system to improve the smooth flow of work

4. Continuous Improvement

Once a Kanban system is in place, it becomes the cornerstone for a culture of
continuous improvement. Teams measure their effectiveness by tracking flow, quality,
throughput, lead times and more.

Page 63 17.11.2017

How to get started with KANBAN?

1.Map your value stream (your development process).

Where do feature ideas come from? What are all the steps that the idea goes through until it's sitting
in the hands of the end-user?

2.Define the start and end points for the Kanban system.

These should preferably be where you have political control. Don't worry too much about starting with
a narrow focus, as people outside the span will soon ask to join in.

3.Agree:

> Initial WIP limits and policies for changing or temporarily breaking them

> Process for prioritizing and selecting features

> Policies for different classes of service (e.g. "standard", "expedite", "fixed delivery date"). Are
estimates needed? When choosing work, which will be selected first?

> Frequency of reviews

4.Draw up a Kanban board.

All you need is a whiteboard and some Post-It™ notes. Don't spend too much time making it look
beautiful because it will almost certainly evolve.

5.Start using it.

Page 64 17.11.2017

Kanban Tips

Seeing progress is motivating

Page 65 17.11.2017

Kanban Tips

Buffer your bottlenecks

Since the bottleneck is so critical, one of the things we want to do is
make sure that it rarely (preferably never) runs out of work. You
might wonder how a bottleneck can run dry, when, by definition, it
is fed by a wider pipe? The thing to remember is that in our kanban
system we're purposely limiting work-in-progress (WIP), and work
items vary in size; so a couple of large items being processed
upstream could end up temporarily starving the bottleneck.

The solution is to place a buffer in front of the bottleneck, as per
the diagram below. In this example, the development team is the
bottleneck so a buffer with a limit of 3 work items has been
inserted immediately before it (the numbers at the top of the
columns are the limits).

Page 66 17.11.2017

Kanban Tips

Buffer your bottlenecks

Page 67 17.11.2017

Kanban Tips

Limit your WIP (work in progress)

Without specific policies to limit WIP, people will naturally tend to
multi-task. Non-bottlenecks will start new tasks whenever they're
waiting for a bottleneck to complete. The effect is a continually
growing pile of partially-completed work. Since the bottleneck limits
the throughput of the system, the extra WIP doesn't actually result
in more throughput; it just pushes up lead-times.

Page 68 17.11.2017

Kanban Tips

Time at the bottleneck is what counts

Which of these feature ideas should we select?

Feature A? It's a no-brainer, right?

In this case, for the same 20 hours at the bottleneck we can
produce both B and C for a total of $140,000, compared with A at
$100,000.

Page 69 17.11.2017

Kanban Tips

Curve your Enthusiasm (by Ray Immelman)

Page 70 17.11.2017

KANBAN for Software Development Projects?

Why could be KANBAN a bad choice for software development
projects?

David Anderson, the creator of The Kanban Method: “Kanban is NOT
a software development life cycle or project management
methodology! It is not a way of making software or running
projects that make software. It is actually not possible to develop
with only Kanban. The Kanban Method by itself does not contain
practices sufficient to do product development.

Page 71 17.11.2017

KANBAN for Software Development Projects?

Kanban is modeled more after the assembly line and
manufacturing. Scrum is modeled more after creative product
design.

Which do you think more closely resembles software
development? Franz and Herbert on the assembly line at the
Magna? Or the group of NASA engineers on the ground who saved
the lives of the Apollo 13 astronauts by coming up with a creative
solution to a problem within a time-box? We shouldn’t think about
software rolls off of an assembly line

Page 72 17.11.2017

KANBAN for Software Development Projects?

Software Development is about empirical processes

Think of yourself making a pot of soup from scratch, without a
recipe. Think about all of the “taste-tweak ingredients-taste”
experiments(feedback loops) you would need to get a pot of soup
that tastes good.

Scrum has the frequent feedback loops built in, for a variety of
audiences(Dev Team, Product Owner, Stakeholders, Users) , and for
a variety of topics(process-Sprint Retro, product-Ordered Product
Backlog, product-Sprint Review, product-Valuable/Releasable
Increments). Kanban has no such built in loops, but again, that’s
because it wasn’t designed for software development!

Page 73 17.11.2017

KANBAN for Software Development Projects?

From a Complexity Science view, Kanban is for ‘complicated’ work
while Scrum is for “complex” work.

‘Complicated’ work is best solved via ‘good practice’ and ‘experts’ who can find ’cause
and effect’ fairly easily. think of an the IT support person who sets up your computer or
trouble shoots it. Yes, you need an expert to solve these problems, and the vast
majority of the time, the steps to solve these kinds of problems are fairly consistent
and repeatable. They are not exactly repeatable, just mostly repeatable. If the steps
were exactly repeatable then they would fall into the ‘Simple’.

‘Complex’ work is best solved via ‘safe to fail experiments’ and one can only ascertain
cause and effect after the fact. Each Sprint in Scrum is a ‘safe to fail’ experiment
because, while the Sprint increment is always releasable, the business side of the
house makes the decision on whether it is safe/valuable to release it or not. In the
case of an increment that is un-safe, the team course corrects and comes back with an
increment the next sprint that is hopefully safe or more-safe. These safe to fail
experiments can be repeated over and over again until it’s time to release the
increment.

Page 74 17.11.2017

Conclusion: When to use KANBAN?

Proposal: software team is doing XP, Scrum, Crystal, Waterfall, RUP,
DSDM, FDD, etc, then you can layer Kanban on top of it to help find
bottlenecks and waste.

Or continues improvement of software (new versions), Bugfixing,…

