

The history of marketing research

In the years 1910-1920 survey analysis became the primary method of gathering market data.

In 1922 the largest American marketing research agency acting on an international scope - 'AC Nielsen' was founded. In 1930 s research based on statistical sample started to be used on a larger scale.

## Consumer preferences

One of the most important aspects of consumer behavior is its measurement and pinpointing his/her preferences. To the notion of preference the notion of utility is closely linked.

Utility is understood as subjectively perceived satisfaction derived from a certain consumption structure. Due to a fact that it is not possible to directly measure the level of satisfaction experienced by a consumer, the notion of preference was introduced.

The notion of consumer preference is understood as follows: ,"preference is a subjective evaluation or evaluation system that influences a consumer making a given choice. Preference occurs when a consumer chooses a certain need, good or service over other needs, goods or services that are an option. The choice is usually determined by accepted value system".

## The basic terms

## 1) Most important terms

- Utility, and utility measurement
- Preferences
- Types of preferences: stated and revealed
- Data, data analysis, information
- Microeconometrics and microdata

2) Stated preferences measurement:

- Attributes, objects.
- Compositional, decompositional, mixed
- Decompositional approach: Conjoint analysis methods and Discrete choice methods.


## Economic context of preferences

1. Homo oeconomicus - the concept of rational choice (Adam Smith 1723-1790)
2. Utility - measure of fulfill needs and justification of the choice
3. Preferences - the consumer's ability to order and choose products and/or services offered on the market under given conditions
4. Category of preferences is used to measure (quantify) utility
5. Revealed preferences - these are real (historical) market decisions of consumers
6. Stated preferences - these are hypothetical (declared) market behaviors of consumers

## Data, micro data, data analysis, information

The data - represents the results of measurement (numbers, symbols). In context of preference evaluation we deal with microdata (from microeconometrics methods).

Data analysis - statistical and econometrical methods used do explore the data ("to mine" the information that is somewhere within the data)

Information - the factor decreasing our lack of knowledge (it reduces the uncertainty) about the object, phenomenon, process.

$$
\text { Data } \rightarrow \text { Information } \rightarrow \text { Knowledge } \rightarrow \text { Wisdom }
$$

## Microeconometrics

Microeconometrics is an interface between economics and statistics. It encompasses economic theory and statistical methods to analyze microdata, i.e. economic information about individuals, households, firms.
http://www.nobelprize.org (2000)

- Evaluation of individual behavior (consumers, companies, households, etc.).
- Microdata analysis at individual level. Low level of data aggregation allows to observe phenomenon that could not be seen from higher levels of data.
- Large number of observations (huge amount of microdata).



## Self-Explicated, Multi-Attribute Models

- Self-explicated models use a combination of the questions: "Which brands do you prefer?" and "How important is the brand?" - For each attribute (brand, price, performance, etc.) respondents rate or rank the levels within that attribute.
- Respondents rate an overall importance for the attribute, when considering the various levels involved.

Preference scores (utilities) can be developed by combining the preferences for levels with the importance of the attribute overall.

Self-explicated models can be used to study many attributes and levels in a questionnaire.


1) Attributes, factors - explanatory variables describing goods or services,
2) Attributes levels - values of attributes,
3) Profiles (stimuli, treatments, runs) - variants of goods or services.


## Decompositional approach

The main aim of the research is to evaluate (estimate) consumer preferences according to presented objects - so trade-offs choices are needed.

The variables that are describing objects are called attributes or factors and their realizations (values) are called levels.

Attributes and factors are used to generate different variants of products or services (called profiles, stimuli, runs). The maximum number of profiles depends on the number of attributes and levels (multiplication of all the levels).

Respondents evaluate profiles according to their preferences. These values are called total utilities (empirical utilities). They are used to decompose total utility of a profile to obtain part-worth utilities for each level of each attribute

## Decompositional approach

Conjoint analysis originated in mathematical psychology by psychometricians and has been developed since mid-sixties also by researchers in marketing and business. Conjoint analysis is a statistical method for finding out how consumers make trade-offs and choose among competing products or services. It is also used to predict (simulate) consumers' choices for future products or services.

Discrete choice methods - their general concept results from random utility theory. The process of selecting the profiles is of probabilistic nature, as the behavior of consumers is not always predictable and consistent. This means that - under identical conditions and from identical set of options consumer choices may differ in time.

## Conjoint measurement and conjoint analysis

The main purpose of the conjoint analysis is to estimate part-worth utilities for attribute levels. Part-worth utilities are estimated for each respondent separately and as average values for the whole sample. Estimated part-worth utilities allow to estimate following values:

- Total teoretical utilities of profile for all respondents.
- Average total utilities in the sample.
- Average attribute importance.
- Average total utilities in the segments (clusters) of respondents.

Conjoint analysis model can be estimated:

- At individual level (number of models is equal to the number of respondents).
- At aggregated level (one model for whole sample is estimated).


## Data gathering-example

Attributes and levels:

1. Country (5) a) Poland b) Germany c) Italy d) Great Britain e) France
2. Price (3)
a) up to 10 PLN
b) $10-20 \mathrm{PLN}$
c) above 20 PLN
3. Type of coffee (3)
a) instant
b) ground
c) beans
a) 100 g
c) 500 g

Number of profiles:
$5 \times 3 \times 3 \times 3 \times 3=405-$ full factorial design
4. Package (3) a) glass b) folic c) Can
5. Weight (3)
b) 250 g

$$
16 \text { - fractional factorial design }
$$

$$
5-2-2-2
$$

| Full profile method |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | COUNTRY | PRICE | TYPE OF COFFEE | PACKAGE | WEIGHT | RATING |
| 1 | Germany | 10-20 PLN | instatnt | glass | 100 g |  |
| 2 | Poland | up to 10 PLN | ground | folic | 250 g |  |
| 3 | Italy | above 20 PLN | beans | folic | 250 g |  |
| ... | ... | ... | ... | ... | ... |  |
| 12 | France | above 20 PLN | instatnt | can | 500 g |  |
| 13 | Poland | up to 10 PLN | ground | folic | 100 g |  |
| 14 | Germany | above 20 PLN | ground | glass | 100 g |  |
| 15 | G. Britain | 10-20 PLN | beans | can | 500 g |  |
| 16 | Poland | up to10 PLN | instatnt | glass | 50 g |  |


| Data gathering -conjoint analysis |  |  |  |
| :---: | :---: | :---: | :---: |
| Pairwise profile comparison |  |  |  |
| PROFILE A |  | PROFILE B |  |
| COUNTRY | Poland | COUNTRY | Germany |
| PRICE | $10-20$ PLN | PRICE | above 20 PLN |
| TYPE OF COFFEE | instant | TYPE OF COFFEE | ground |
| PACKAGE | glass | PACKAGE | folic |
| WEIGHT | 100 g | WEIGHT | 250 g |

## Data gathering

In the traditional conjoint analysis full profile method is usually used. It uses the whole set of possible elements (combination of all attributes and levels).

In this method consumer evaluates the profiles according to his/her own preferences regarding attributes and levels. The respondent may rank the profiles or indicate the attractiveness of profile.

Experiment planning methods are used to reduce the total number of profiles (due to human perception limitations).

## Important early articles

- Luce, Duncan and John Tukey (1964), "Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement," Journal of Mathematical Psychology, 1, 1-27
- Green, Paul and Vithala Rao (1971), "Conjoint Measurement for Quantifying Judgmental Data," Journal of Marketing Research, 8 (Aug), 355-363
- Johnson, Richard (1974), "Trade-off Analysis of Consumer Values," Journal of Marketing Research, 11 (May), 121-127
- Green, Paul and V. Srinivasan (1978), "Conjoint Analysis in Marketing: New Development with Implications for Research and Practice," Journal of Marketing, 54 (Oct), 3-19

Louviere, Jordan and George Woodworth (1983), "Design and Analysis of Simulated Consumer Choice or Allocation Experiments," Journal of Marketing Research, 20 (Nov), 350-367

## Pros and cons of conjoint analysis

## Advantages:

- Allows to choose preference measurement scale,
- Easy experiment design (unlike in the discrete choice methods),
- Allows to estimate utilities at individual (respondent) level,
- Individual utilities make the market segmentation much easier,


## Disadvantages:

- The profile evaluation done by respondent does not reflect real choices,
- The number of attributes is limited,

Sometimes fractional factorial design can not be used,

## Discrete choice methods - characteristics

Second method that represents decompositional approach is the discrete choice method. It was introduced by Louviere and Woodworth for marketing research problems in 1983.

In 2000 James Heckman and Daniel McFadden received Nobel prize in economics:

- James Heckman for development of theory and analysis methods - samples, - Daniel McFadden for development of theory and analysis methods discrete choice.

When using discrete choice methods researcher does not ask respondent (consumer) to rank or order profiles but allows him/her to choose one of them or resign from choice

## Discrete choice methods - characteristic

Discrete choice methods are based on probabilistic models, which describe the probability that a profile from a set of profiles will be chosen.

The choice of the profiles is affected by the attributes and respondent characteristics. These variables are usually discrete (they are categories and nominal variables).

The main aims of estimation of a discrete choice model are:

- estimation of choice probabilities for profiles,
- estimation of attributes importance,
- respondent (customer) segmentation,
- preference forecasting.

Discrete choice model can be estimated at:

- aggregate level (one model for all sample),
- segment level (number of models is equal number of segments; may be used latent class model),
- individual level (using hierarchical Bayes model)

Results of estimation discrete choice model may be used to:

- elicitation (identification) consumers preferences,
- market share analysis,
- forecasting consumer preferences,
- consumers segmentation.


## Hazard ratio

In the process of estimation we receive (like in conjoint analysis) - total utilities of profiles, part-worth utilities of attributes levels and hazard ratio. Hazard ratio helps to assess obtained results:

- if hazard ratio is greater than 1 we assume that the attribute is a stimulus for a probability of choice,
- if hazard ratio is lower than 1 we assume that the attribute is a destimulant for a probability of choice,
- if hazard ratio is equal to 1 we assume the attribute has no significant influence on the probability of choice.
- Questions closely mimic what buyers do in real world: choose from available products or chooce „none" option
- Paper or Computer/Web based interviews possible (no dedicated software in needed)


## Discrete choice methods weaknesses

- Usually requires larger sample sizes than with CA or ACA
- Tasks are more complex, so respondents can process fewer attributes (6 or less)
- Complex tasks may encourage response simplification strategies
- Analysis more complex than with CA or ACA

Similarities and differences between conjoint analysis and discrete choice method

| Element | Conjoint analysis | Discrete choice method |
| :--- | :---: | :---: |
| Theoretical background | conjoint measurement | random utility concept |
| Number of attributes | up to 10 (usually up to 6) | $6-8$ |
| Number of levels | up to 15 | $9-15$ |
| Questionnaire | pen and paper, PC-aided | pen and paper, PC-aided |
| Data gathering | full profile, pairwise, attribute <br> comparison | choice made from sets of <br> profiles |
| Scale of measurement | ratio, interval, ordinal | nominal |
| Model | linear, additive | linear or not, additive, <br> considering interactions |
| Estimation | OLS, LINMAP, MONANOVA, <br> PREFMAP, CSP | MNL, MNP, CLM, HB, NCLA |
| Estimation level | individual, segment | individual, segment, <br> aggregate |
| Where can it be applied? | segmentation, market share <br> simulation | market share simulation, <br> estimation of demand |

## Pros and cons of decompositional methods

## Discrete choice methods

Pros:
a) they are closer to real market choices
b) allow to resign from making a choice,
c) estimates model parameters at aggregate level (it allows to estimate market shares for new profiles).
Cons:
a) gathered data provides less information,
b) needs much more data (observations),
c) they do not allow to estimate different models for each respondent (segmentation can not be done without e.g. latent class analysis).

## Example CA

## Preference analysis for university customers

 (students)
## The research

I. The product:

Customer (students) preferences
II. Attributes and levels:

1. Communication with teachers $\left(X_{1}\right)$ :
a) e-mail, b) individual meetings, c) phone
2. Teaching material provided $\left(X_{2}\right)$ :
a) on paper, b) via mail, c) other (i.e. own notes)
3. How the problem is presented $\left(X_{3}\right)$ :
a) chalk and board, b) foil projector, c) multimedia projector.
4. Communication with administration of the university $\left(\mathrm{X}_{4}\right)$ :
a) e-mail, b) phone, c) individual.
5. Elicitation forms for students (X5)
a) individual projects, b) case studies, c) exercises, tasks to solve at home.
All profiles: $3 \times 3 \times 3 \times 3 \times 3=243$
III. Profiles: 18 profiles obtained with R software (fractional design).

| Profiles |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Communication with teachers | Teaching material | Presentation | Communication with administration | Elicitation forms |
| 1 | individual | other | chalk and board | e-mail | individual projects |
| 2 | phone | e-mail | multimedia projector | e-mail | individual projects |
| 3 | phone | paper | foil projector | phone | individual projects |
| 4 | individual | e-mail | multimedia | phone | individual projects |
| 5 | e-mail | paper | chalk and board | individual | individual projects |
| 6 | e-mail | other | foil projector | individual | individual projects |
| 7 | individual | paper | chalk and board | ${ }^{\text {e-mail }}$ | case studies |
| 8 | e-mail | e-mail | foil projector | e-mail | case studies |
| 9 | phone | other | chalk and board | phone | case studies |
| 10 | e-mail | other | multimedia projector | phone | case studies |
| 11 | individual | e-mail | foil projector | individual | case studies |
| 12 | phone | paper | multimedia projector | individual | case studies |
| 13 | phone | other | foil projector | e-mail | exercises, tasks |
| 14 | e-mail | paper | multimedia projector | e-mail | exercises, tasks |
| 15 | ${ }^{\text {e-mail }}$ | e-mail | chalk and board | phone | exercises, tasks |
| 16 | individual | paper | foil projector | phone | exercises, tasks |
| 17 | phone | e-mail | chalk and board | individual | exercises, tasks |
| 18 | individual | other | multimedia projector | individual | exercises, tasks |




## Final remarks

1. The most attractive profile was the 2 -nd profile (phone contact with teacher, e-mail form of material, multimedia projector used to present the material, email used to contact the administration.
2. The least attractive was 9-th profile (phone contact with teacher, other form of material (i.e. own notes), chalk and board used to present the problem, and phone used to contact the administration.
3. The most important attribute is the form of the martials provided, then how this material was presented, communication (with teachers and administration), elicitation forms for students.

Example CA

Preference analysis of bank customers (banking products)

|  |  | Research design |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Profile | BANK ACCOUNT ACCESS VIA MOBILE DEVICES | bank account COMISSION | CREDIT CARD PAYMENT RETURN | FEE FOR WITHDRAWAL In FOREIGN ATM MACHINES | CREDIT CARD FREE of Charge |
| 1 | no | no | yes | yes | yes |
| 2 | yes | yes | no | yes | yes |
| 3 | no | yes | yes | no | yes |
| 4 | yes | no | no | no | yes |
| 5 | yes | no | yes | yes | no |
| 6 | no | yes | no | yes | no |
| 7 | \% yes | yes | yes | no | no |
| 8 | no | no | no | no | no |


|  |  |  | Total utilities of the profiles |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROFILE | BANK ACCOUNT ACCESS VIA MOBILE DEVICES | BANK ACCOUNT COMISSION | CREDIT CARD PAYMENT RETURN | feE FOR withdrawal IN FOREIGN ATM MACHINES | CREDIT CARD <br> free of charge | total Utility <br> (RANK) |
| 1 | no | no | yes | yes | yes | 8 |
| 2 | yes | yes | no | yes | yes | 2 |
| 3 | no 0 | yes | yes | no | yes | 4 |
| 4 | yes | no | no | no | yes | 6 |
| 5 | yes | no | yes | yes | no | 5 |
| 6 | no | yes | no | yes | no | 3 |
| 7 | yes | yes | yes | no | no | 1 |
| 8 | no | no | no | no | no | 7 |
|  |  |  |  |  |  | tuxcom |

## Remarks

1.The most important attribute is access to bank account via mobile devices and the commission.
2.The most attractive profile was the 7 -th profile: bank account with access via mobile devices, with some commission, but with returns for credit card usage. This account does not allow to withdraw money for free from foreign ATM machines and credit card is not free of charges.

## Exmaple in R programm

Preference analysis of tea consumers Attributes and levels:

1. Price
a) low
b) average
c) high
2. Type
a) black
b) green
c) red
3. Kind
a) bags
b) granulated
c) leaf
4. Aroma
a) yes
b) no

Number of all profile: $3 \times 3 \times 3 \times 2=54$
Fractional design: 13.

## Ay Sawtooth Software

## Example

CA Sample Survey
http://www.sawtoothsoftware.com/demos/cva/cgi-
bin/ciwweb.pl?hid studyname=cva\&hid pagenum $=0$

## Ay Sawtooth Software

## Example

ACA Sample Survey
http://www.sawtoothsoftware.com/demos/aca/cgibin/ciwweb.pl?hid studyname=aca\&hid pagenum=0

## Example CBC

Light beer consumer preference analysis with application of SAS/STAT software.

Research characteristics

| Attribute | Levels |
| :--- | :--- |
| Country of origin | Poland, Germany, Czech Republic, Holland, Denmark |
| Price range | Up to 2.00 PLZ, 2.00-4.00 PLZ, above 4.00 PLZ |
| Alcohol content | Up to 1.0\%, 1.8-5.0\%, above 5.0\% |
| Packaging type | Bottle, can, mug |
| Packaging volume | $0.331,0.51$, above 0.51 |



Bottom
of data file

Results

|  | Variable Label | DF | Parameter Estimate | Standard | Chi-Square | $\mathrm{Pr}>\mathrm{ChiSq}$ | $\begin{aligned} & \text { Hazard } \\ & \text { Ratio } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Poland | 1 | -0.19009 | 0.03048 | 5.5779 | 0.0182 | 0.827 |
|  | Germany | 1 | -0.84030 | 0.13626 | 94.8857 | < 0001 | 0.432 |
|  | Czech Republic | 1 | -0.66955 | 0.09359 | 64.1529 | <. 0001 | 0.512 |
|  | Denmark | 1 | $-0.96916$ | 0.09008 | 115.7588 | < 0001 | 0.379 |
|  | Holland | 1 | -1.37733 | 0.09538 | 208.5386 | < 0001 | 0.252 |
|  | none | 0 | 0 |  |  |  |  |
| 辰宫 | пone |  | ${ }^{\circ}$ |  |  |  |  |
|  | 2-4 PLN | 1 | 0.35644 | 0.05740 | 38.5609 | < 0001 | 1.428 |
|  | to 2PLN | 1 | 0.50510 | 0.05521 | 83.7052 | < 0001 | 1.657 |
|  | above 4 FLN |  | - |  |  |  |  |
|  | none | 0 | -0025 |  |  |  |  |
|  | 1,8-4,5\% | 1 | -0.02562 | 0.05012 | 0.2614 | 0.6092 | 0.975 |
|  | to 1,0\% | 1 | -0.85350 | 0.05995 | 202.7177 | < 0001 |  |
|  | above 5,0\% | 0 | 0 |  |  |  |  |
|  | none |  | ${ }^{\circ}$ |  |  |  |  |
|  | botle | 1 | 0.18360 | 0.05470 | 11.2653 | 0.0008 | 1.202 |
|  | mug | , | 0.25960 | 0.05625 | 21.3002 | <. 0001 | 1.296 |
|  | can | 0 | 0 |  |  |  |  |
|  | none | 0 | ${ }^{0}$ |  |  |  |  |
|  | 0.331 | 1 | -0.31304 | 0.05465 | 32.8142 | $<0001$ | 0.731 |
|  | 0,51 | 1 | 0.00462 | 0.05182 | 0.0080 | 0.9289 | 1.005 |
|  | above 0,51 | 0 | 0 |  |  |  |  |

Results - hazard ratio


## Results

Consumption of nationally-brewed beer dominates on the Polish beer market.
Choice of beer profile is determined (in the order of importance) by: - price range,

- packaging type,
- packaging volume,
- alcohol content,
- country of origin.

Choice propabilities is positively stimulated by:

- price range up to 2 PLN ,
- price range of 2-4 PLN,
- packaging type - mug,
- packaging type - bottle,
- packaging volume -0.5 I


## Research characteristics

The research
Revealed preferences of travel agencies customers - the choices concerning different holiday offers.

## The aim

Identification of attribute levels which have most important impact on the choice - they decide which offer will be chosen.

Recognizing the structure of choices holiday offers (deals).

## Attributes and levels

| Attributes | Levels |
| :--- | :--- |
| The place | sea, lake, mountains, sightseeing, does <br> not matter |
| Accommodation | camping (B), apartment (B), hotel (B\&B) |
| Travel by | car, bus, plane |
| The price | less than 1500 PLN (375 €) per week, <br> from 1500 to 3000 PLN (375-750 €) per <br> two weeks, more than 3000 PLN $(750 €)$ <br> per two weeks |
| Country | in Poland, in Europe, outside Europe |

## The experiment

Number of blocks used: 3

Number of profiles in each block 15

Number of profiles: 6 (5 profiles describing holiday offer + option "None of them")

Number of evaluated profiles: $3 \times 15 \times 6=\mathbf{2 7 0}$

## The experiment

Full factorial design: $3^{4 \times 5}$ sets ( 5 profiles described by 4 attributes - 3 levels each)

Total number of sets in full design: 3486784401
Minimal experiment size: $20 \times(3-1)+1=41$ sets
In the research 45 sets were used
Efficiency of the experiment: $\mathrm{D}=85,96$

## The research - questionnaire

Number of questionnaires:

| distributed: | 440, |
| :--- | :--- |
| used in the research: | 394. |

Number of questionnaires in each block:
block 1-130,
block 2 - 130,
block 3-134.
Totally we get 35460 observations ( 15 sets * 6 profiles * 394 respondents)


The results

|  | Variable | $\underset{\text { F }}{\text { D }}$ | Parametr | Standard | Chi-Square | Pr $>$ Chisq | Hazard Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{8}{2}$ | Sea | 1 | 0,49417 | 0,06153 | 64.5034 | <0,0001 | 1.639 |
|  | Lake | 1 | ${ }^{0,22887}$ | 0.06435 | 12,6484 | 0,0004 | 1.257 |
|  | Mountains | 1 | -0,04748 | 0.06488 | ${ }_{0}^{0.5355}$ | 0,4643 | 0.954 |
|  | Sightseing | 1 | -0,13182 | 0.06522 | ${ }^{4.0856}$ | ${ }^{0} 0,0433$ | 0.876 <br> 0.948 |
|  | Any ${ }_{\text {A }}$ |  |  |  |  |  |  |
|  | None |  |  |  |  |  |  |
|  | Apartment (B) | 1 | -0,08058 | 0,03836 | 4,4135 | 0,0357 | ${ }^{0.923}$ |
|  | Camping (B) | 1 | -0,04234 | 0,03896 | 1,1813 | 0,2771 | 0,959 |
|  | Hotel (B\&B) |  | 0 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\begin{aligned} & \frac{E}{2} \\ & \frac{2}{2} \\ & \frac{2}{5} \end{aligned}$ | None |  |  |  |  |  |  |
|  | Bus | 1 | -0,03180 |  |  |  |  |
|  | Car | , | ${ }_{-0,12988}$ | 0,03938 | 10,8751 | 0,0010 | 0,878 |
|  | Plane |  |  |  |  |  |  |
| 8 | None |  |  |  |  |  |  |
|  | Less than 1500 PLN (week) | 1 | ${ }^{0} 0.04791$ | 0.03924 | ${ }^{1,4999}$ | 0,2221 | 1,049 |
|  | 150010 3000 PLN (2 wecks) | 1 | 0,05903 | 0,03991 | 2,1882 | 0,1391 | 1,061 |
|  | Above 3000 PLN (2 weeks) |  | 0 |  |  |  |  |
| $\begin{aligned} & \text { E } \\ & \text { 领 } \end{aligned}$ | None |  |  |  |  |  |  |
|  |  | 1 | $-0,10599$ <br> 0.3042 | 0 | 7,1568 67.893 | -0,0000 | 0,900 1.356 |
|  | in ${ }_{\text {in Poland }}^{\text {in }}$ |  |  |  |  |  |  |



## Final remarks

- The stimulating impact on the choice probability have:
- Place: sea,
- Country: in Europe,
- Place: lake,
- Price from 1500 to 3000 PLN (per 2 weeks),
- Price less than 1500 PLN (per week).
- Following attributes have the impact on the choice: place, country, price, accommodation and transport
- Attribute levels that were not presented have no significant influence on the choice probability.


## fy Sawtooth Software

## Example

CBC Sample Survey
http://www.sawtoothsoftware.com/demos/cbc/cgi-
bin/ciwweb.pl?hid studyname=cbc\&hid pagenum $=0$

## Ay Sawtooth Software

## Example

CBC Sample Survey
http://www.sawtoothsoftware.com/surveys/baseball/cgi-
bin/ciwweb.pl?hid studyname=baseball\&hid pagenum $=0$

## Ay Sawtooth Software

## Example

ACBC Sample Survey
http://www.sawtoothsoftware.com/demos/acbc/cgibin/ciwweb.pl?hid studyname=acbc\&hid pagenum $=0$

Ay Sawtooth Software

## Example

ACBC Sample Survey
http://www.sawtoothsoftware.com/demos/acbc dine/cgibin/ciwweb.pl?hid studyname $=$ acbc dine\&hid pagenum $=0$

## Thank You!

Dziękuję bardzo.

